Technical Gestures Recognition by
Set-Valued Hidden Markov Models
with Prior Knowledge

Yann Soullard®, Alessandro Antonucci®, Sébastien Destercke®

Abstract Hidden Markov models are popular tools for gesture recognition.
Once the generative processes of gestures have been identified, an observation
sequence is usually classified as the gesture having the highest likelihood, thus
ignoring possible prior information. In this paper, we consider two potential
improvements of such methods: the inclusion of prior information, and the
possibility of considering convex sets of probabilities (in the likelihoods and
the prior) to infer imprecise, but more reliable, predictions when information
is insufficient. We apply the proposed approach to technical gestures, typically
characterized by severe class imbalance. By modelling such imbalances as
a prior information, we achieve more accurate results, while the imprecise
quantification is shown to produce more reliable estimates.

1 Introduction

In this paper we are concerned with classification tasks where one wants to
identify gestures (a popular computer vision task [4]) as well as errors in in-
correctly executed gestures. We assume the possible gestures belong to a set
C :={c1,...,cp} and denote as C the variable taking values in C. A gesture
recognition algorithm then aims at assigning the correct value ¢* € C to a
given sequence. With few exceptions [5], gestures are regarded as multivari-
ate time series, say (01, ...,0r), with o; € R the joint observation of the
F features extracted from the t-th frame, for each t = 1,...,T. Technical
gestures are quite specific, as they are based on particular movements, they
require specific skills and they should be executed with a high level of pre-
cision. Examples of technical gestures can be found in many domains such
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as sport (e.g., the forehand of a tennis player), manufacturing (e.g., doing a
welding), or handicraft (e.g., the movements of a potter), just to cite a few.

Technical gestures are confronted with specific problems. First, due to the
fact that most learning data have to be collected from experts (e.g., if in a
later employee training stage, we want to recognize well and badly performed
gestures), the obtained data sets are typically small and imbalanced. Those
data can also be quite noisy, as measurements are often performed in working
environments. Also, when the recognition model is used to decide if a task
or a gesture has been performed correctly, a recognition error might have a
significant economic impact (e.g. the manufacturing of a defective part or an
interruption in the production line). This is why considering tools able to
account for this imbalance or this lack of data is important.

Hidden Markov Models (HMMs, [9]) are probabilistic graphical models
that can easily cope with multivariate time series, and are therefore often used
for gesture recognition [2, 6]. As they are generative models usually trained
with maximum-likelihood estimates, HMMs are less prone to over-fitting than
their discriminative counterparts [10]. However, they can still suffer from bad
parameters estimation when the training examples do not fit well the true
data distribution [3]. To gain reliability in the learning, a recent paper [1]
proposed a set-valued quantification of the HMM parameters inspired by the
theory of imprecise probabilities, for which polynomial-time inference algo-
rithms have been also developed [7]. With those imprecise HMMs, evidential
information might not be sufficient to unequivocally recognize the performed
gesture, and sets of candidate gestures might be obtained instead. Sect. 2
contains background information about imprecise methods and HMMs.

Such approaches take care of the limited amount of available data, while
the imbalances over the classes (a typical issue for data of this kind) are
neglected by implicitly assuming a uniform marginal distribution over the
gestures. The main methodological contribution of this paper, explained in
Sect. 3, is a procedure to add prior information about the classes, that can
itself be imprecise and represented as a convex set of probability mass func-
tions. The methodology is validated in Sect. 4 on technical gestures performed
in an aluminum foundry. This real-world application is part of a training sys-
tem in a virtual environment for tasks related to mold cleaning (Fig. 1).

2 Background

Imprecise Probability. Let C' denote the class variable associated to the
gesture and C the M possible values. If the uncertainty about C' is described
by a probability mass function P, the task of deciding the actual value of C,
assuming zero/one losses, returns:

cp = argmax P(c). (1)
ceC
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Fig. 1 Pictures of mold cleaning in a work environment (top left) and in the experimental
station of a virtual environment (top right). Expected positions and inclinations of a blower
during a technical gesture with a movement from the right to the left (bottom).

In many cases single probability mass functions might be unable to provide
a reliable uncertainty model. Assume for instance that, among three possible
gestures, an expert is telling us that c; is at least as probable as ¢y, which is
in turn at least as probable as ¢3. Deciding that P(C) = [.7,.2,.1] is a better
model than P'(C) = [.6,.3,.1] from this information alone is questionable.
In such situations, credal sets, i.e., closed convex sets of probability mass
functions, can offer a more cautious, hence reliable, uncertainty model. In our
case, a credal set over C, denoted K (C), will be specified by a finite number
of linear constraints, or equivalently by its (finite) set of extreme points.
In the expert example with three gestures, we can consider the credal set
K(C) defined by the constraints P(c1) > P(ca2) > P(cs), together with non-
negativity and normalization, or equivalently, by listing the extreme points
Pi(C) = [1,0,0], P,(C) = [3,3,0], and P3(C) = [3,%,3] (Fig. 2). The
generalization of Eq. (1) to credal sets can be achieved in many ways. Here
we consider the mazimality criterion, which returns the following sets of
optimal classes:

Ci={deC:A eCs.t. P(")>P()VP{C)eK()}. (2)

Non-optimal classes are therefore those such that, for each element of the
credal set, there is another class with strictly higher probability.

a

Fig. 2 A credal set modeling uncertainty about a gesture with three options.

c3
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Hidden Markov Models (HMMs). HMMs [9] are popular probabilistic
descriptions of time series with many applications in speech recognition and
computer vision, to name but a few. HMMs assume the observation Oy is
generated by a paired state variable X, for each t = 1,...,T, with T the
length of the sequence. State variables are in turn assumed to be gener-
ated by a Markov chain process. All state variables take their values from a
space X of cardinality N. An HMM specification comprises an initial state
probability mass function P(X;), a N x N state transition probability ma-
trix P(X¢+1|X:), and a (usually normal) distribution for each observation
with mean and covariance indexed by the corresponding state, say pu(X;)
and o (X;). We consider stationary models with the values of the parameters
independent of . HMMSs give a compact specification of the joint density:

T-1 T
P(xy,...,27,01,...,07) == P(z1) [ Plxiilz:) H/\/’:((i‘))(Ot)' (3)
t=1 t=1

By marginalizing the states in Eq. (3) we obtain the likelihood of a sequence
P(oy,...,or). This can be achieved in O(T'N?) time by a message propa-
gation algorithm [9]. HMMs are trained using an Expectation-Maximization
approach, the Baum-Welch algorithm, detecting a local maximum of the like-
lihood defined by the joint probabilities of the training sequences and of their
classes. Classification can then be achieved by: (i) training a HMM per class;
and then (ii) assigning to a test sequence (01, ..., or) the class associated to
the HMM giving the highest likelihood to the sequence, i.e.,

*

¢* = argmax P(oy,...,0r|c), (4)
ceC

where notation P(...|c) is used for the density corresponding to the HMM
associated to class c. Here no prior probabilities over the classes are supposed
to be available, i.e., a uniform distribution over them is implicitly assumed.

As Baum-Welch estimates might be unreliable, for instance when using few
data or short sequences, imprecise probabilities have been proposed to miti-
gate this unreliability in the HMM quantification [1]. An HMM with imprecise
parameters can be learned from a sequence by combining the Baum-Welch
algorithm with the imprecise Dirichlet model (IDM, [11]). In this model,
P(X,) is replaced by a credal set K(X1) and P(X¢41|z) with K(Xpy1|x:)
for each x;. As shown in [7], the bounds [P(o1,...,or|c), P(01,...,07|c)] of
the likelihood with respect to those credal sets can be computed with the
same time complexity as the precise computation. The classification scheme
in Eq. (4) can then be extended to set-valued HMMs by comparing the like-
lihood intervals and then deciding the optimal ones as in Eq. (2).
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3 HMM-based Classification with Prior Knowledge

If prior knowledge about the classes is available in the form of a mass function
P(C), the likelihood-based classification scheme in Eq. (4) becomes:

¢* = argmax P(oy,...,0r|c) - P(c), (5)
ceC

which corresponds to a comparison of the posterior probabilities
P(cloy,...,or) x P(oy,...,or|c) - P(c). (6)

A proper assessment of the prior mass function is clearly crucial in this
Bayesian framework. Yet, the elicitation of qualitative or quantitative expert
prior knowledge suffers from the same issues discussed in Sect. 2, and a credal
set K(C) might offer a more reliable model of the prior knowledge about C'.
We therefore consider a twofold generalization of Eq. (5) to imprecise prob-
abilities in which P(C) is replaced by a credal set K(C), and the sequence
likelihoods P(o1, ..., or|c) are replaced by their lower /upper bounds learned
from the training data. The optimal classes can be therefore obtained by
applying the criterion in Eq. (2) to the, imprecisely specified, posterior prob-
abilities in Eq. (6). To achieve that in practice, given two classes ¢/, ¢” € C,
we evaluate whether the posterior probability for ¢” is always greater than
that of ¢/, i.e.,

min P(oy,...,or|c") - P(c")

P(C)EK(C) P(oy,...,or|c) - P(¢)
P(o1,...,or|C)E[P(01,...,07|C),P(01,...,01|C)]

>1. (1)

where we assume the denominator strictly positive. If the above inequality is
satisfied, class ¢’ is removed from the set of optimal labels. The set of optimal
options Cj is obtained by iterating the test in Eq. (7) for any pair of classes,
and removing from C the dominated options. The optimization with respect
to the imprecisely specified likelihoods is trivial and allows to rewrite Eq. (7)
as follows:

. B(Oh sty OTlcl/) i P(C”)

min

P(C)EK(C) P(o1,...,0r|c) - P(c)

(®)

As K(C) can be expressed by linear constraints, the task in Eq. (8) is a
linear-fractional task, which can be reduced to a linear program and solved
in polynomial time w.r.t. the number of classes M by a linear solver.
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4 Empirical Validation

We test the proposed approach on six technical gesture data sets (Tab. 1). The
TG and TGE datasets refer respectively to classification of types of gestures
and types of errors (for specific gestures). The gestures are performed in
an aluminium foundry and refer to a workstation where a technician cleans
a mold (Fig. 1). The technician performs several tasks with different tools
such as a compressed-air blower, a scraper and a pistol. Motion capture is
performed by markers attached to the tools and the user’s body. Markers
are tracked by infrared cameras and, at each time frame, 3D positions and
orientations are extracted. Such raw features may not directly provide a good
modelling of the gesture. Following [8], we compute high-level features such
as velocities, pairwise distances and angles to enrich the description.

Dataset F M  Samples for ci/.../cm

TG, 15 4 320/160/224/287
TGo 15 4 192/320/256/287
TGs 18 4 100/100/40/20
TGE,; 19 4 57/36/45/33
TGE; 4 3 15/30/20

TGE3 4 3 20/10/15

Table 1 Number of features, classes, and samples per class in the benchmark.

To train HMMs as in Eq. (3), we run the Baum-Welch algorithm with a
maximum of 25 iterations before convergence and three states for the hidden
variables (i.e., N = 3). For the imprecise quantification we set s = 4 for the
parameter determining the imprecision level (in term of missing observations)
in the IDM. The accuracy (i.e., the percentage of properly classified gestures)
describes the performance of the precise classifiers. We say that an imprecise
classifier is indeterminate when more than one class is returned as output. To
characterize the output of an imprecise classifier we use its determinacy (i.e.,
percentage of determinate outputs) and output size (i.e., average number of
classes in output when indeterminate). The performance is described in terms
of single accuracy (i.e., accuracy when the output is determinate) and set
accuracy (i.e., percentage of indeterminate outputs including the true class).
For a direct comparison with precise classifiers we compare the accuracy with
the ugg utility-based measure. This is basically a positive correction (namely
1.2(q — 1)/q¢?), advocated in [12], of a discounted accuracy giving 1/q to a
classifier returning ¢ options if one of them is correct, and zero otherwise.

The proposed method is intended to achieve robustness when coping with
small datasets. Accordingly, we adopt a (five-fold) cross validation scheme
with one fold for training, and the rest for testing. In Fig. 3, we compare
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the accuracies of the approaches based on the likelihood (Eq. (4)) and the
posterior (Eq. (6)) with the ugg for the imprecise posterior. The precise prior
is obtained from the distribution over the classes of the training data. The
prior credal set is similarly obtained by the IDM (s = 4). Introducing the
prior has a positive effect which is only modest in the precise case and more
notable in the imprecise case. A deeper analysis of the imprecise model based
on the posterior is in Tab. 2. Remarkably, the classifier achieves high determi-
nacies and, when indeterminate, only two classes are typically returned. The
single accuracies are higher than the accuracies of the precise models (i.e.,
when determinate the imprecise classifier outperforms the precise methods).
Finally, on two datasets, when indeterminate the imprecise classifier returns
always two classes and one of them is always the correct one.

100%
5%
cam
25% e
TGy TG

TG3 TGE1 TGE2 TGE3

Fig. 3 Accuracies of the likelihood (white) and posterior (gray) comparison against the
ugo of the imprecise posterior (black).

Dataset Precise accuracy Single accuracy Set accuracy Determinacy Output size

TGy 67.3% 70.3% 80.8% 93.0% 2.1
TG 69.7% 71.5% 78.8% 93.7% 2.1
TG3s 94.7% 95.0% 100.0% 97.9% 2.0
TGEL 38.0% 40.7% 58.7% 96.2% 2.0
TGE2 70.0% 71.1% 76.7% 94.6% 2.0
TGE3 67.3% 71.1% 100.0% 93.6% 2.0

Table 2 Performance of the classifier in the precise and imprecise posterior case.

5 Conclusions and Outlooks

A new classification algorithm for multivariate time series is proposed. The
sequences are described by HMMs, and the likelihoods returned by these mod-
els are combined with a prior distribution over the classes. A robust modeling
based on an imprecise-probabilistic quantification of the HMM parameters
and the prior is shown to produce more reliable classification performance,
without compromising the computational efficiency. Such an approach allows



8 Yann Soullard, Alessandro Antonucci, Sébastien Destercke

to deal with small and imbalanced datasets. We obtain a set of predicted
labels when the information is not sufficient to recognize the performed ges-
ture. An application to technical gesture recognition in an industrial context
is reported. As future work, we want to apply our approach to sequences of
gestures, by also achieving a segmentation of the various gestures.
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