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Abstract
We replace strong independence in credal networks with
the weaker notion of epistemic irrelevance. Focusing on
directed trees, we show how to combine local credal sets
into a global model, and we use this to construct and justify
an exact message-passing algorithm that computes updated
beliefs for a variable in the tree. The algorithm, which is
essentially linear in the number of nodes, is formulated
entirely in terms of coherent lower previsions. We supply
examples of the algorithm’s operation, and report an ap-
plication to on-line character recognition that illustrates the
advantages of our model for prediction.
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1 Introduction

The last twenty years have witnessed a rapid growth of
graphical models in the fields of artificial intelligence and
statistics. These models combine graphs and probability
to address complex multivariate problems in a variety of
domains, such as medicine, finance, risk analysis, defense,
and environment, to name just a few.

Much has been done also on the front of imprecise probab-
ility. Credal networks [3] have been and still are the subject
of intense research. A credal network creates a global model
of a domain by combining local uncertainty models using
some notion of independence, and then uses this to do in-
ference. The local models represent uncertainty by closed
convex sets of probabilities, also called credal sets.

The notion of independence used with credal nets in the
vast majority of cases is that of strong independence (with
some exceptions in [6]). Loosely speaking, two variables
X ,Y are strongly independent if the credal set for (X ,Y )
can be regarded as originating from a number of precise
models in each of which X and Y are stochastically inde-
pendent. Strong independence is closely related with the
sensitivity analysis interpretation of credal sets, which re-

gards an imprecise model as arising out of partial ignorance
of a precise one. This is a somewhat narrow view, and it
does not apply in general.

An alternative and attractive way to express irrelevance that
is not committed to the sensitivity analysis interpretation
is offered by epistemic irrelevance [15]: we say that X
is irrelevant to Y if observing X does not affect beliefs
about Y . Epistemic irrelevance is defined directly in terms
of a subject’s beliefs and is therefore very well suited for
a behavioural theory of imprecise probability. It is also
weaker than strong independence, and it therefore does
not lead to overconfident inferences when the sensitivity
analysis interpretation is not justified.

At this point the question that we address in this paper
should be clear: can we define credal nets based on epi-
stemic irrelevance, and moreover create an exact algorithm
to perform efficient inferences with them? We give a fully
positive answer to this question in the special case that (i)
the graph under consideration is a directed tree, and (ii)
the related variables assume only finitely many values. The
intuitions that showed us the way towards this result ori-
ginated in previous work done by some of us on imprecise
probability trees [7] and imprecise Markov chains [8].

How do we address this problem? After giving some pre-
liminary notions and introducing the model in Sec. 2, we
discuss in Sec. 3 how to combine marginal models into
joint ones reflecting certain irrelevance assessments, in a
way that is as conservative as possible. We comment on
the graphical separation criteria induced by epistemic ir-
relevance in Sec. 5. We then go on to develop and justify
an inference algorithm for treating the model as an expert
system in Sec. 6. The algorithm is used to update the tree:
it computes posterior beliefs about a target variable in the
tree conditional on the observation of other variables, that
are called instantiated, meaning that their value is determ-
ined. It is based on message passing, as are the traditional
algorithms that have been developed for precise graphical
models, and it has some remarkable properties: (i) it works
in time essentially linear in the size of the tree; (ii) it natively
computes posterior lower and upper previsions (or expecta-



tions) rather than probabilities; (iii) it is an algorithm for
credal nets developed for the first time exclusively using the
formalism of coherent lower previsions [15]; and (iv) it is
shown to lead to coherent inferences under mild conditions.
We give a step-by-step example of the way inferences can
be done in our framework in Sec. 7, where we also com-
ment on the intriguing relationship between the failure of
certain classical separation properties in our framework,
and dilation [10, 14]. The last part of the paper focuses on
numerical simulations. In Sec. 8 we empirically measure
the amount of imprecision introduced by using epistemic
irrelevance rather than strong independence in a credal tree,
when propagating inferences backwards (towards the root)
from instantiated nodes to the target node; indeed, it can be
shown [7] that there is no difference between inferences that
go forward from instantiated nodes to target under strong in-
dependence and epistemic irrelevance. In Sec. 9 we present
an application of our algorithm to on-line character recog-
nition. We learn the probabilities from data and compare
the predictions of the our approach with those of its precise
probability counterpart. The results are encouraging: they
show that the tree can be used for real applications, and that
the imprecision it originates is justified.

Due to lack of space, we must assume the reader has a
working knowledge of the basics of Walley’s [15] theory
of coherent lower previsions. We also refrain from giving
proofs of technical results for the same reason, and rather
stress motivation, simple justifications and examples.

2 Credal trees under epistemic irrelevance

Basic notions and notation. We consider a rooted and
directed discrete tree with finite width and depth. We call
T the set of its nodes s, and we denote the root, or initial,
node by �. Consider any node s, then we denote the set of
its parents by P(s). Of course, P(�) = /0, and for s 6=� we
have that P(s) = {m(s)} where m(s) is the mother node of
s. Also, for each node s, we denote the set of its children by
C(s), and the set of its siblings by S(s). Clearly, S(�) = /0,
and if s 6= � then S(s) = C(m(s)) \ {s}. If C(s) = /0, then
we call s a leaf, or terminal node.

For nodes s and t, we write sv t if s precedes t, i.e., if there
is a directed segment in the tree from s to t. The relation v
is a special partial order on the set T . A(s) := {t ∈ T : t @ s}
denotes the set of ancestors of s, and D(s) := {t ∈ T : s@ t}
its set of descendants. Here s @ t means that s v t and
s 6= t. We also use ↑s := A(s)∪{s}, ↓s := D(s)∪{s}, ↑S :=⋃
{↑s : s∈ S} and ↓S :=

⋃
{↓s : s∈ S} for any subset S⊆ T .

With each node s of the tree, there is associated a variable
Xs assuming values in a finite non-empty set Xs. We denote
the set of all real-valued maps (gambles) on Xs by L (Xs).
We extend this notation to more complicated situations
as follows. If S is any subset of T , then we denote by XS
the tuple of variables whose components are the Xs for all

s ∈ S. This new joint variable assumes values in the finite
set XS :=×s∈SXs, and the corresponding set of gambles is
denoted by L (XS). Generic elements of Xs are denoted by
xs or zs. Similarly for xS and zS in XS. Also, if we mention
a tuple zS, then for any t ∈ S, the corresponding element in
the tuple will be denoted by zt . We assume all variables in
the tree to be logically independent.

Local uncertainty models. We now add a local uncer-
tainty model to each of the nodes s. If s is not the root
node, i.e., has a mother m(s), then this local model is a (sep-
arately coherent) conditional lower prevision Qs(·|Xm(s))
on L (Xs): for each possible value zm(s) of the variable
Xm(s) associated with its mother m(s), we have a coherent
lower prevision Qs(·|zm(s)) for the value of Xs, conditional
on Xm(s) = zm(s). In the root, we have an unconditional local
uncertainty model Q

�
for the value of X�; Q

�
is a coherent

lower prevision on L (X�). We use the common generic
notation Qs(·|XP(s)) for all these local models.

Global uncertainty models. In this and the follow-
ing two sections, we show how all these local models
Qs(·|Xm(s)) can be combined into global uncertainty mod-
els. If we generically denote by the symbol Ps lower previ-
sions on L (X↓s), representing information about X↓s, then
this means we want to end up with an unconditional joint
lower prevision P := P� on L (XT ) for all variables in
the tree, as well conditional lower previsions Ps(·|Xm(s)) on
L (X↓s) for all non-initial nodes s. Ideally, we want these
global (conditional) lower previsions to be coherent with
one another, and to reflect the conditional irrelevancies (or
Markov-type conditions) that we want the graphical struc-
ture of the tree to encode. In addition, we want them to be
as conservative (small) as possible.

The interpretation of the graphical model. Consider
any node s in the tree, and its parent set P(s) [either
empty or equal to {m(s)}]. We also consider the set s :=
T \ [D(s)∪P(s)] of its non-parent non-descendants. Then
conditional on the parent variables XP(s), the non-parent
non-descendant variables Xs are assumed to be epistemic-
ally irrelevant to the variables X↓s associated with s and its
descendants. This interpretation turns the tree into a credal
tree under epistemic irrelevance, and we shall also use the
term imprecise Markov tree (IMT) for it.

In terms of the global models, this means that for all s ∈ T ,
for all S⊆ s and for all zS∪P(s) ∈XS∪P(s):

Ps(·|zP(s)) = Ps(·|zS∪P(s)). (1)

We discuss the separation properties that accompany this
interpretation in some detail in Sec. 5. For now, we focus on
one immediate consequence that will help us go from local
to global models in Sec. 4. Consider some non-initial node s.
The interpretation of the graphical structure of the tree tells



us that for each sibling c ∈ S(s) of s, the variable Xc is epi-
stemically irrelevant to the variable Xs, conditional on Xm(s).

Xm(s)

Xs . . . Xc

It even tells us that for any
non-empty set S ⊆ S(s) of
siblings of s, the variable XS
is epistemically irrelevant to
Xs, conditional on Xm(s). We
conclude that all children of
a node are not just epistem-
ically irrelevant to each other: they are even epistemically
independent [15, Chapter 9], in some very specific sense.

3 Net-independent natural extension

This leads us to the following small digression. We consider
the following problem, the solution of which will help us
in our discussion further on. Suppose we have a number
of marginal lower previsions Pn representing beliefs about
the values that each of a finite number of (logically inde-
pendent) variables Xn assume in the respective finite sets
Xn, n ∈ N, where N is some finite set.

Net-independent products. We now want to construct
a joint lower prevision PN on L (XN), where XN =
×n∈NXn, that coincides with the marginals Pn on their
respective domains L (Xn), and such that this joint reflects
the following structural assessments: for each o ∈ N and
each non-empty I ⊆ N \{o}, the variables XI are epistem-
ically irrelevant to the variable Xo. In other words, learning
the value of any number of these variables does not affect
beliefs about any single other variable amongst them. We
then call the variables Xn, n ∈ N net-independent.

Such irrelevance assessments are useful because they allow
us to turn marginal into conditional lower previsions. In-
deed, for each o ∈ N and each I ⊆ N \{o} we can use the
epistemic irrelevance of XI to Xo to infer from the marginal
lower prevision Po a conditional lower prevision Po(·|XI)
on L (Xo) given by:

Po(h|xI) := Po(h) for all gambles h on Xo.

So we can use the assessment of net-independence of the
variables Xn, n ∈ N to infer from the marginals a family of
conditional lower previsions:

N (Pn,n ∈ N) := {Po(·|XI) : o ∈ N and I ⊆ N \{o}}.

Definition 1. A coherent joint lower prevision PN on
L (XN) that coincides with the marginal lower previ-
sions Pn on their domains L (Xn), n ∈ N and that is
coherent with the family of conditional lower previsions
N (Pn,n ∈ N) is called a net-independent product of these
marginals. If it exists, then the point-wise smallest such net-
independent product is called the net-independent natural
extension of these marginals, and denoted by ⊗n∈NPn.

Conditioning factorising lower previsions. The follow-
ing notion of factorisation is intimately linked with that of
a net-independent product. It will also play a crucial part in
our development of an algorithm for treating an imprecise
Markov tree as an expert system.

Definition 2. We call a coherent lower prevision PN on
L (XN) factorising if for all o ∈ N and all non-empty I ⊆
N \{o}, all g ∈L (Xo) and all non-negative fi ∈L (Xi),
i ∈ I, PN( f g) = PN( f PN(g)), where f := ∏i∈I fi.

As an important example, the so-called strong product [3]
×n∈NPn of the marginal lower previsions Pn is factorising.
But for any coherent factorising joint lower prevision PN ,
we see that for any non-empty subset I of N:

PN(×i∈IAi) = ∏
i∈I

PN(Ai) and PN(×i∈IAi) = ∏
i∈I

PN(Ai),

(2)
where Ai ⊆Xi for all i ∈ I. Let us call any real functional
Φ on L (X) strictly positive if Φ(I{x}) > 0 for all x ∈X.
Then the following result is immediate from Eq. (2).

Proposition 1. A factorising coherent lower prevision PN
on L (XN) is strictly positive if and only if all its marginals
are, and its conjugate upper prevision PN is strictly positive
if and only if all its marginals are.

As a next step, suppose we want to condition a coherent
and factorising joint PN on an observation XI = xI , where I
is some proper subset of N. To this end, we calculate the
regular extension [15, Appendix J]: when PN(I{xI}) > 0,

R(h|xI) := max{µ ∈ R : PN(I{xI}[h−µ])≥ 0},

where h is any gamble on XO and O is any non-empty
subset of N \ I. Otherwise R(·|xI) is vacuous. Then because
PN is factorising:

PN(I{xI}[h−µ]) = PN(I{xI}PN(h−µ))

=

{
PN({xI})(PN(h)−µ) if PN(h)≥ µ

PN({xI})(PN(h)−µ) if PN(h)≤ µ,

so we conclude that, quite interestingly,

R(h|xI) = PN(h) as soon as PN({xI}) > 0. (3)

Because we are working in a finitary context [XN is a
finite set], the regular extension R(·|XI) is guaranteed to
be coherent with the joint lower prevision PN [15, Sec. J3].
This, together with an interesting recent coherence result by
Enrique Miranda [11, Theorem 5], leads us to the following
conclusion.

Proposition 2. Any coherent joint lower prevision PN on
L (XN) that is factorising and strictly positive,1 is a net-
independent product of its marginals.

1We strongly suspect that this proposition, and a number of further
results that build on it, such as Proposition 3, can be extended to the case
that not PN but PN is strictly positive. We have no proof yet, however.



As an immediate consequence, the strong product ×n∈NPn
of a collection of strictly positive marginals Pn, n ∈ N, is
also a net-independent product of these marginals, and is
therefore coherent with the associated family of conditional
lower previsions N (Pn,n ∈ N). So this family is itself al-
ways guaranteed to be coherent, and because all the sets
Xn are finite, we can invoke Walley’s Finite Extension The-
orem [15, Theorem 8.1.9] to conclude that there always is
a point-wise smallest joint lower prevision that is coherent
with the family N (Pn,n ∈ N). This provides the most im-
portant step in the proof of the following result. Another
crucial step is provided by the fact that, since the strong
product is a net-independent product of the marginals Pn,
n ∈ N, it has to dominate the net-independent natural exten-
sion: ×n∈NPn ≥⊗n∈NPn.

Proposition 3. For any collection of strictly positive and
coherent marginal lower previsions Pn on L (Xn), n ∈
N, their net-independent natural extension ⊗n∈NPn exists,
and it is a factorising and strictly positive coherent lower
prevision on L (XN).

4 Constructing the most conservative joint

We now show how to construct specific global models for
the variables in the tree, and argue that these are the most
conservative coherent models that extend the local models
and express all conditional irrelevancies (1) encoded in the
imprecise Markov tree. In the next section, we will use
these global models to construct and justify an algorithm
for treating the imprecise Markov tree as an expert system.

The crucial step lies in the recognition that any tree can be
constructed recursively from the leaves up to the root, by
using basic building blocks of the following type:

Xm(s)

Xs

Xc1 Xc2
. . . Xcn

Qs(·|Xm(s))

Pck
(·|Xs))

The global models are then also constructed in a recurs-
ive manner, following the same pattern. Consider a node
s and suppose that, in each of its children c ∈ C(s), we
already have a global conditional lower prevision Pc(·|Xs)
on L (X↓c). We construct a global conditional lower pre-
vision Ps(·|XP(s)) on L (X↓s) by backwards recursion:

Ps(·|Xs) :=⊗c∈C(s)Pc(·|Xs) (4)

Ps(·|XP(s)) := Qs(Ps(·|Xs)|XP(s))

= Qs(⊗c∈C(s)Pc(·|Xs)|XP(s)), (5)

the conditional lower prevision Ps(·|Xs) on L (X↓C(s)) be-
ing the net-independent natural extension of the conditional
lower previsions Pc(·|Xs) on L (X↓c), c ∈C(s). If we start
in leaves t with the ‘boundary condition’

Pt(·|XP(t)) := Qt(·|XP(t)) for all leaves t, (6)

then the recursion relations (4) and (5) eventually lead to
a global model Ps(·|Xm(s)) in all nodes s of the tree, and
in particular to a joint model P := P� on L (XT ). These
are the global (conditional) lower previsions we have been
looking for, as the following theorem tells us. Its proof
proceeds in a recursive fashion, similar to the construction
of the global models. It relies rather heavily on the fact that
the net-independent natural extension is factorising, and on
the coherence result by Miranda [11, Theorem 5], already
mentioned before Proposition 2.
Theorem 4. If all local models Qs(·|XP(s)) on L (Xs), s ∈
T are strictly positive, then the global models Ps(·|XP(s)) on
L (X↓s), s ∈ T obtained through Eqs. (4)–(6), constitute
the point-wise smallest coherent family of (conditional)
lower previsions that (i) extend the local models, and (ii)
satisfy the epistemic irrelevance conditions (1) encoded in
the graphical structure.

5 Some separation properties

Without going into too much detail, we would like to point
out one of the more striking differences between the separ-
ation properties in imprecise Markov trees under epistemic
irrelevance, and the more usual ones for Bayesian nets [12]
and credal nets under strong independence [3].

It is clear from the interpretation of the graphical model
described in Sec. 2 that we have the following simple sep-
aration results:

Xi1 Xi2 Xt Xi2Xi1 Xt

where in both cases, Xi2 separates Xt from Xi1 : when the
value of Xi2 is known, additional information about the
value of Xi1 does not affect beliefs about the value of Xt . In
this figure, between i1 and i2, and between i2 and t, there
may be other nodes, but the arrows along the path segment
through these nodes should all point in the indicated dir-
ections. The underlying idea is that t is a (descendant of
some) child c of i2, and conditional on the mother i2 of
c, the non-parent non-descendant i1 of c is epistemically
irrelevant to c and all of its descendants.

On the other hand, and in contradistinction with what we
are used to in Bayesian nets, we will not generally have
separation in the following configuration:

Xi1 Xi2 Xt

where Xi2 does not necessarily separate Xt from Xi1 . We
will come across a simple counterexample in Sec. 7. Where



does this difference with the case of Bayesian nets origin-
ate? It is clear from the reasoning above that Xi2 separates
Xi1 from Xt : conditional on Xi2 , Xt is epistemically irrel-
evant to Xi1 . For precise probability models, irrelevance
generally implies symmetrical independence, and there-
fore this will generally imply that conditional on Xi2 , Xi1
is epistemically irrelevant to Xt as well. But for imprecise
probability models no such symmetry is guaranteed [2],
and we therefore cannot infer that, generally speaking, Xi2
will separate Xi1 from Xt . As a general rule, we can only
infer separation if the arrows point from the ‘separating’
variable Xi2 towards the ‘target’ variable Xt .

6 Algorithm for treating the imprecise
Markov tree as an expert system

We now consider the case where the imprecise Markov tree
is treated as an expert system: we are interested in making
inferences about the value of the variable Xt in some target
node t, when we know the values xE of the variables XE in
a set E ⊆ T \{t} of evidence nodes.

The formulation of the problem. If we assume that the
values of the remaining variables are missing at random,
then we can do this by conditioning the joint P obtained
above on the available evidence ‘XE = xE ’. We will address
this problem by updating the lower prevision P to the lower
prevision Rt(·|xE) on L (Xt) using regular extension [15,
Appendix J]:

Rt(g|xE) = max{µ ∈ R : P(I{xE}[g−µ])≥ 0} (7)

for all gambles g on Xt , assuming that P({xE}) > 0. Con-
sider the map ρg : R→ R : µ 7→ P(I{xE}[g−µ]). By coher-
ence of P, |ρg(µ1)− ρg(µ2)| ≤ |µ1− µ2|P({xE}), which
implies that ρg is continuous. Coherence of P also guar-
antees that ρg is concave and non-increasing. Hence {µ ∈
R : ρg(µ)≥ 0}= (−∞,Rt(g|xE)], which shows that the su-
premum that we should have a priori used in (7) is indeed
a maximum. Rt(g|xE) is the right-most zero of ρg, and it
is, again by coherence of P, guaranteed to lie between infg
and supg. If moreover P({xE}) > 0, then it is the unique
zero. It appears that any algorithm for calculating Rt(g|xE)
will benefit from being able to calculate the values of ρg,
or at least check their signs, efficiently.

Calculating the values of ρg recursively. Recall that
the joint P can be constructed recursively from leaves to
root. The idea we now use is that calculating ρg(µ) =
P(I{xE}[g−µ]) becomes easier if we graft the structure of
the tree onto the argument gµ := I{xE}[g− µ] as follows.
Define gµ

e := I{xe} for all e ∈ E, gµ

t := g− µ , and gµ
s := 1

for s ∈ T \ (E ∪{t}), whence gµ = ∏s∈T gµ
s . Also define,

for any s ∈ T , the gamble φ
µ
s on X↓s by φ

µ
s := ∏u∈↓s gµ

u .

Then φ
µ

� = gµ , φ
µ
s ≥ 0 if s 6v t, and for any s ∈ T :

φ
µ
s = gµ

s ∏
c∈C(s)

φ
µ
c , (8)

where we use the convention that ∏u∈ /0 αu = 1. Eq. (8) is
the argument counterpart of Eq. (5). Also, if s 6v t then gµ

s
and φ

µ
s do not depend on µ , nor on g.

First, let us consider any node s 6v t. We define the messages
πs and πs recursively by

πs := Qs

(
gµ

s ∏
c∈C(s)

πc|Xm(s)

)
πs := Qs

(
gµ

s ∏
c∈C(s)

πc|Xm(s)

)
,

(9)
summarised by the self-explanatory shorthand notation:
πs = Qs(g

µ
s ∏c∈C(s) πc|Xm(s)). There are two possibilities:

πs =


Qs

(
{xs}|Xm(s)

)
∏

c∈C(s)
πc(xs) if s ∈ E

Qs

(
∏

c∈C(s)
πc|Xm(s)

)
if s /∈ E.

The messages πs and πs can be seen as tuples of real num-
bers, with as many components as there are elements in
Xm(s): one for each of the possible values of Xm(s). As their
notation suggests, they do not depend on the choice of g or
µ , but only (at most) on which nodes are instantiated, i.e.,
belong to E, and on which values xE the variables for these
instantiated nodes assume. It then follows from Eqs. (5)
and (8) and the factorisation property2 of the local product
lower previsions that:

Ps(φ
µ
s |Xm(s)) = πs and Ps(φ µ

s |Xm(s)) = πs. (10)

Next, we turn to nodes sv t. Define the messages π
µ
s by

π
µ
s := Qs(ψ

µ
s |XP(s)), (11)

where the gambles ψ
µ
s on Xs are given by the recursion

relations:

ψ
µ

t := max{g−µ,0}∏
c∈C(t)

πc +min{g−µ,0}∏
c∈C(t)

πc, (12)

and for each � 6= sv t, so m(s) exists,

ψ
µ

m(s) := gµ

m(s)

[
max{πµ

s ,0}∏
c∈S(s)

πc +min{πµ
s ,0}∏

c∈S(s)
πc

]
.

(13)
The messages π

µ
s are again tuples of real numbers, with

one component for each of the possible values of Xm(s).3

2This shows that the results of updating the tree (and the algorithm we
are deriving) in this way will be exactly the same for any way of forming
a product of the local models for the children of s, provided only that
this product is factorising. For instance, using the strong product and the
net-independent natural extension will lead to the same inferences.

3Of course, if s is the root node, then P(s) = /0 and π
µ
s is just a single

real number, which by Eq. (14) is equal to ρg(µ).



They depend on the choice of g or µ , as well as on which
nodes are instantiated and on which values xE the variables
for these instantiated nodes assume. It then follows from
Eqs. (5) and (8) and the factorisation property that

Ps(φ
µ
s |XP(s)) = π

µ
s , (14)

and of course ρg(µ) = π
µ

�. We conclude that we can find
the value of ρg(µ) by a backwards recursion method con-
sisting in passing messages up to the root of the tree, and in
transforming them in each node using the local uncertainty
models; see Eqs. (9) and (11)–(13).

There is a further simplification, because we are not ne-
cessarily interested in the actual value of ρg(µ), but rather
in its sign. It arises whenever there are instantiated nodes
above the target node: E ∩A(t) 6= /0. Let in that case et be
the greatest element of the chain E ∩A(t), i.e., the instanti-
ated node closest to t, and let st be its successor in the chain
↑t. If we let λg(µ) be the real number

max{πµ
st (xet ),0}∏

c∈S(st )
πc(xet )+min{πµ

st (xet ),0}∏
c∈S(st )

πc(xet ),

then it follows from Eq. (12) that ψ
µ
et = I{xet }λg(µ). If we

now continue to use Eqs. (12) and (13) until the root of the
tree, we eventually find that

ρg(µ) =

{
P(I{xet })λg(µ) if λg(µ)≥ 0
P(I{xet })λg(µ) if λg(µ)≤ 0.

Since we assumed that P(I{xE}) > 0, it readily follows that
P(I{xet }) > 0, so we gather from Eq. (7) that Rt(g|xE) =
max{µ ∈ R : λg(µ) ≥ 0}. In fact, under the assumption
that P(I{xE}) > 0, λg(µ) ≥ 0 can be replaced in this ex-
pression by π

µ
st (xet )≥ 0. We conclude that in order to do

expert system inference of the type described above, we
can perform all calculations on the subtree ↓st , where the
new root st has local model Qst

(·|xet ). This is also borne
out by the discussion of the separation properties in Sec. 5.

An algorithm. We now convert these observations into a
workable algorithm. Using regular extension and message
passing, we are able to compute Rt(g|xE); we (i) choose
a µ ∈ [ming,maxg]; (ii) calculate the value of λg(µ) by
sending messages from the terminal nodes towards the root;
and (iii) look for the maximal µ that will make this λg(µ)
zero. But we have seen above that this naive approach can
be sped up by exploiting the separation properties of the
tree, and the independence of µ for some of the messages.
For a start, as we are only interested in the sign of ρg(µ),
which is determined by π

µ
st (xet ), we only have to take nodes

into consideration that strictly follow et .

�

X1

x2

X3

x4

X5

X6

X7
X8

X9

X10

X11

X12

X13

x14

x15

X16
x17

X18

x19

x20

x21

X22

x23
X24

π
µ

12

π
µ

13

π
µ
st (xet )

π14

π15

π17

π19

π20
π21

t

st

et

: observed node
: queried node

: unobserved node

The next thing a smarter implementation of the algorithm
can do is determine the trunk T̃ of the tree: those nodes that
precede the queried node t and strictly follow the greatest
observed element et preceding t. For the tree above for in-
stance, where X13 (in grey) is the queried node and the light
grey nodes {X2,X4,X14,X15,X17,X19,X20,X21,X23} are in-
stantiated, the trunk consists of T̃ = {X5,X12,X13}.

The start of the algorithm can be implemented with
the piece of pseudo-code on the left. Here, the queried

st := t
T̃ := {t}

while m(st) 6∈ E
do:

T̃ := T̃ ∪m(st)
st := m(st)

end while
et := m(st)

node t is known in advance and be-
sides the trunk T̃ , also the nodes st
and et are computed. We are espe-
cially interested in the nodes that
constitute the trunk, because only
these nodes will send messages to
their parents that depend on µ . As
a consequence, we can summarise
all the µ-independent messages by
propagating all messages until they

reach the trunk, which means that they have to be calculated
only once.

The following piece of pseudocode does the trick. Both πc

for n ∈ T̃ do:
for c ∈C(n) do:

if c 6∈ T̃ then:
calculate πc

end if
end for
Πn := ∏

c∈C(s)\T̃
πc

end for

and πc can be calculated in
the recursive manner outlined in
Eq. (10), where the recursion starts
at the leaves and moves up to (but
stops right before) the trunk. In the
leaves, the local lower and upper
previsions of the indicator of the
evidence are sent upwards if the
leaf is instantiated; if not the con-
stant 1 is sent up, which is equival-



ent to deleting the node from the tree. We could envisage
removing barren nodes (all of whose descendants are unin-
stantiated, such as X6, . . . , X11, X16, X18, X22 in the example
tree above) from the tree beforehand, but we believe the
computational overhead created by the search for them will
void the gain.

At this point we can calculate π
µ
st (et). If we assume that

t, st , g, Πn and Πn for n ∈ T̃ are stored as global vari-
ables, the following function will do the job. Now that

function getJoint(µ)
s := t
while s 6= st do:

calculate ψ
µ
s

π
µ
s := Qs(ψ

µ
s |Xm(s))

s := m(s)
end while
calculate ψ

µ
st

π
µ
st (et) := Qst

(ψµ
st |xet )

return π
µ
st (et)

we have the code to calculate
π

µ
st (et), we can tackle the fi-

nal problem: find the max-
imal µ for which π

µ
st (et) =

0. In principle, a secant
root-finding method could
be used, but considering the
computational complexity of
the getJoint function, and us-
ing that π

µ
st (et) is concave,

we can speed up the calcu-
lation of the maximal root

drastically as shown in the figure below.

If a, b, c, and d are distributed in such a way that ρg(a)≥
ρg(b) ≥ 0 ≥ ρg(c) ≥ ρg(d), then the root of ρg is in the
interval [smin,smax] := [p,min{p,r}].

µ

Rt(g|xE)

a b

c

d

p q r

function concaveRoot(a,b,c,d,smin,smax)
µ := 1

2 (smin + smax)
f (µ) := getJoint(µ)

if f (µ) > 0 then:
a := b
b := (µ, f (µ))
smax = min{bx− bx−ax

by−ay
by,smax}

else
d := c
c := (µ, f (µ))
smax = min{dx− dx−cx

dy−cy
dy,smax}

end if
smin = bx− bx−cx

by−cy
by

if smax− smin < tolerance then:
return smin

else
return concaveRoot(a,b,c,d,smin,smax)

end if
Here, smin is prefered over smax as return value to stay on
the conservative (small) side. If by−ay = 0, then we define
min{bx− bx−ax

by−ay
by,smax} to be equal to smax and similarly

for dy− cy = 0. Keeping this in mind, we can finalise our
algorithm by invoking a call to the following function.

function getLowerPrevisionGivenEvidence(g)
a := (min(g), getJoint(ax))
dx := (max(g), getJoint(ad))
return concaveRoot(a,a,d,d,ax,dx)

The complexity of our algorithm is something that should
be investigated further. But we can say something taking
into account that for a fixed µ each node makes a single
local computation and then propagates the result to the
mother node: this implies that, with µ fixed, the algorithm
is linear in the number of nodes. The iterations on µ create
some additional complexity, but the number of iterations is
usually small: a quick graphical investigation shows that
the computational complexity of our root-finding algorithm
must be lower than for the secant and bisection algorithms.
We even have some experimental evidence that our root
finder can outperform the Newton-Raphson method. There-
fore, we can reasonably take the number of iterations to be
a small constant for all practical applications, and conclude
that the complexity of the algorithm is essentially linear in
the number of nodes.

7 A simple example involving dilation

We present a very simple example that allows us to (i)
follow the expert system inference method discussed above
in a step-by-step fashion; (ii) see that there are separation
properties for credal nets under strong independence that
fail for credal trees under epistemic irrelevance; and (iii)
see that in that case we will typically observe dilation.

Consider the following imprecise Markov chain:

X1 X2 X3

? x2 x3

To make things as simple as possible, we suppose that
X1 = {a,b} and that Q1 is a linear model Q1 with mass
function q. We also assume that Q2(·|X1) is a linear model
Q2(·|X1) with conditional mass function q(·|X1). We make
no such restrictions on the local model Q3(·|X2). We also
use following simplifying notational device: if we have
three real numbers κ , κ and γ , we let

κ〈γ〉 := κ max{γ,0}+κ min{γ,0}.

We observe X2 = x2 and X3 = x3, and want to make infer-
ences about the target variable X1: for any g ∈L (X1), we
want to know R1(g|x{2,3}). Letting r := R1({a}|x{2,3}) and
r := R1({a}|x{2,3}), we infer from coherence that it suffices
to calculate r and r, because

R1(g|x{2,3}) = g(b)+ r〈g(a)−g(b)〉.

We let gµ = [I{a}−µ]I{x2}I{x3}, and apply the approach of
the previous section. We see that the trunk T̃ = {1}, and
the instantiated leaf node 3 sends up the messages π3 =
Q3({x3}|X2) to the instantiated node 2, who transforms
them into the messages

π2 = Q2({x2}|X1)π3(x2) = q(x2|X1)q.



These are sent up to the (target) root node t = 1, which
transforms them into the message π

µ

1 = Q1(ψ
µ

1 ) with ψ
µ

1 =
q(x2|X1)q〈I{a}− µ〉. If we also use that 0 ≤ µ ≤ 1, this
leads to

P1(g
µ) = π

µ

1 = q(a)q(x2|a)q[1−µ]+q(b)q(x2|b)q[−µ],

so we find after applying regular extension that

r = R1({a}|x{2,3}) =
q(a)q(x2|a)q

q(a)q(x2|a)q+q(b)q(x2|b)q

r = R1({a}|x{2,3}) =
q(a)q(x2|a)q

q(a)q(x2|a)q+q(b)q(x2|b)q
.

When q = q, which happens for instance if the local model
for X3 is precise, then we see that, with obvious notations,

r = r =
q(a)q(x2|a)

q(a)q(x2|a)+q(b)q(x2|b)
=: p(a|x2) (15)

and therefore X2 indeed separates X3 from X1. But in gen-
eral, letting α := q(a)q(x2|a) and β := q(b)q(x2|b), we get

r− r =
αβ (q2−q2)

(α2 +β 2)qq+αβ (q2 +q2)

r− p(a|x2) =
αβ

α +β

q−q
αq+βq

p(a|x2)− r =
αβ

α +β

q−q
αq+βq

.

As soon as q > q, X2 no longer separates X3 from X1, and
we witness dilation [10, 14] because of the additional ob-
servation of X3!

8 Numerical comparison

Strong independence implies epistemic irrelevance, but the
converse does not generally hold. This implies that inferred
probability intervals for epistemic irrelevance will gener-
ally include the ones for strong independence [3]. Here, we
report on results of a number of numerical tests involving
updating the tree. As noted in Sec. 5, the two models have
different separation properties: this is particularly import-
ant when evidence is back-propagated from leaves to root.
For this reason, we compare posterior (lower and upper)
probabilities for the root variable of a chain when the leaf
node variable is instantiated.

We have used the algorithm in Sec. 6 to compute pos-
terior probability intervals in the irrelevance case, while
the procedure in [5] is employed in the strong independ-
ence case. Inferred intervals for the former turn out to be
clearly wider, and a mean square difference of about .2 is
observed when considering 100 chains with three or four
ternary variables and credal sets with three randomly gen-
erated extreme points. For longer chains, the updating with

strong independence is too slow and no comparison can
be made. Yet, similar results are observed in binary chains,
for which the 2U algorithm [9] can be used for efficient
update in the strong independence case. In summary, there
is a non-negligible difference between inferences based on
the two notions of ‘independence’.

9 An application: imprecise HMMs

Hidden Markov models (HMMs, [13]) are popular tools
for modelling generative sequences, characterised by an un-
derlying process generating an observable sequence. They
have applications in many areas of signal processing, and
more specifically in speech and text processing.

Both the generative and the observable sequence are de-
scribed by sets of variables over the same domain X, de-
noted respectively by Xs1 , . . . , Xsn and Xo1 , . . . , Xon . The
independence assumptions between these variables, which
characterise HMMs, are those corresponding to the tree
structure below. Informally, this topology states that every
element of the generative sequence depends only on its
predecessor, while each observation depends only on the
corresponding element of the generative sequence.

Xs1 Xs2
. . . Xsn

Xo1 Xo2
. . . Xon

observable sequence

generative sequence

A local uncertainty model should be defined for each vari-
able. In the more usual case of precise probabilistic as-
sessments, this corresponds to linear versions of the local
models Qs1

, Qsk+1
(·|Xsk) and Qok

(·|Xsk), k = 1, . . . ,n, where
the conditional models are assumed to be stationary, i.e.,
independent of k. These model, respectively, beliefs about
the first state in the generative sequence, the transitions
between adjacent states, and the observation process.

Bayesian techniques for learning from multinomial data are
usually employed for identifying these models. But, espe-
cially if only few data are available, other methods leading
to imprecise assessments, such as the imprecise Dirichlet
model (IDM, [16]), might offer a more realistic model of
the local uncertainty. For example, for the unconditional
local model Qs1

, applying the IDM leads to the following
simple identification:

Qs1
({x1}) =

ns1
x1

s+ ∑
x∈X

ns1
x

Qs1
({x1}) =

s+ns1
x1

s+ ∑
x∈X

ns1
x

,

(16)
where ns1

x1 counts the units in the sample for which Xs1 =
x1, and s is a hyperparameter that expresses the degree of
caution in the inferences. For the conditional local models,
we can proceed similarly. This leads to the identification of



an imprecise HMM, a special credal tree under epistemic
irrelevance, like the ones introduced in Sec. 2.

Generally speaking, the algorithm described in Sec. 6 can
be used for computing inferences with such imprecise
HMMs. Below, we address the more specific problem of
on-line recognition, which consists in the identification
of the most likely value of Xsn , given the evidence for the
whole observational sequence Xo1 = xo1 , . . . , Xon = xon . For
precise local models, this problem requires the computa-
tion of the state x̃sn := argmaxxsn∈X P({xsn}|xo1 , . . . ,xon)
that is most probable after the observation. For impre-
cise local models different criteria can be adopted. We
consider maximality: we order the states by xsn > zsn iff
P(I{xsn}− I{zsn}|xo1 , . . . ,xon) > 0, and we look for the un-
dominated or maximal states under this order. This may
produce indeterminate predictions: the set of the undomin-
ated states can have more than one element.

Online character recognition by imprecise HMMs.
As a very first application of the imprecise HMM, we have
considered a character recognition problem. A written text
was regarded as a generative sequence, while the observable
sequence was obtained by artificially corrupting the text.
This is a model for a not perfectly reliable observation pro-
cess, such as the output of an OCR device. The local models
were identified using the IDM, as in (16), by counting the
occurrences of single characters and the “transitions” from
one character to another in the generative sequence, and
by matchings between the elements of the two sequences.
By modelling text as a generative sequence, we obviously
ignore any correlation there might be between a character
and its nth predecessor (with n≥ 2). A better, albeit still not
completely realistic, model would resort to using n-grams
(i.e., clusters of n characters with n≥ 2) instead of mono-
grams. Such models might lead to higher accuracy, but they
need larger data sets for their quantification, because of
the exponentially larger number of possible transitions for
which probabilities have to be estimated. The figure below
depicts how on-line recognition through HMM might apply
to this setup.

Original text:

OCR output:

. . .

. . .

V

V

Xs1

I

Xs2

T

Xs3

A

Xo1

I

Xo2

T

Xo3

O

The performance of the precise model can be character-
ised by its accuracy (the percentage of correct predictions)
alone. The imprecise HMM requires more indicators. We
follow [1] in using determinacy (percentage of determin-
ate predictions), set-accuracy (percentage of indetermin-
ate predictions containing the right state), single accuracy
(percentage of correct predictions computed considering

only determinate predictions), and indeterminate output
size (average number of states returned when the prediction
is indeterminate).

Accuracy 93.96% (7275/7743)
Accuracy (if imprecise indeterminate) 64.97% (243/374)

Determinacy 95.17% (7369/7743)
Set-accuracy 93.58% (350/374)
Single accuracy 95.43% (7032/7369)
Indeterminate output size 2.97 over 21

Table 1: Precise vs. imprecise HMMs. Test results ob-
tained by twofold cross-validation on the first two chants
of Dante’s Divina Commedia and n = 2. Quantification
is achieved by IDM with s = 2 and Perks’ prior (with the
modification suggested in [17]). The single-character out-
put by the precise model is then guaranteed to be included
in the set of characters the imprecise HMM identifies.

The recognition using our algorithm is fast: it never takes
more than one second for each character. Table 1 reports
descriptor values for a large set of simulations, and a com-
parison with precise model performance. Imprecise HMMs
guarantee quite accurate predictions. In contrast with the
precise model, there are ‘indeterminate’ instances for which
they do not output a single state. Yet, this happens rarely,
and even then we witness a remarkable reduction in the
number of undominated states (from the 21 letters of the
Italian alphabet to less than three). Interestingly, the in-
stances for which the imprecise probability model returns
more than a single state appear to be “difficult” for the pre-
cise probability model: the accuracy of the precise models
displays a strong decrease if we focus only on these in-
stances, while the imprecise models here display basically
the same performance as for other instances, by returning
about three characters instead of a single one.

10 Conclusions

We have defined credal trees using Walley’s epistemic irrel-
evance and have developed an efficient exact algorithm for
updating beliefs on the tree. Like the algorithms developed
for precise graphical models, our algorithm works in a dis-
tributed fashion by passing messages along the tree. This
leads to computing lower and upper conditional previsions
(expectations) with a complexity that is essentially linear
in the number of nodes in the tree.

It has been unclear until recently whether an algorithm with
the features described above was at all feasible. Epistemic
irrelevance is most easily formulated using coherent lower
previsions, which have never been used before in the con-
text of credal networks. Moreover, epistemic irrelevance
is not as “well-behaved” as strong independence is with
respect to the graphoid axioms for propagation of probabil-



ity in graphical models [4]. Our results are therefore very
encouraging, and they have the potential to open up new av-
enues of research in credal nets. This is important because
strong independence is not always the most suitable notion
of independence in an imprecise probability context, and
epistemic irrelevance has wider scope, as well as a natural
behavioural interpretation.

There is one more issue we would like to clarify at this
point. While our algorithm clearly is fully functional as
soon as all observations have positive upper probability, we
have only proved that it produces coherent inferences when
their lower probability is positive; see Theorem 4. At the
time of writing this, we have strong indications that our
coherence results can be extended to include observations
with zero lower but positive upper probability.

Avenues for future research seem to be many. It would be
important to extend the algorithm at least to so-called poly-
trees, which are substantially more expressive graphs than
trees are. It would be interesting also to study in more detail
the separation properties induced by epistemic irrelevance
on a graph. For applications, it would be very important to
develop statistical methods specialised for credal nets under
irrelevance that avoid introducing excessive imprecision in
the process of inferring probabilities from data. This could
be achieved, for instance, by using a single global IDM
over the variables of the tree rather than many local ones,
as in our experiments.
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