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Abstract

We present a credal classifier for multilabel data. The
model generalizes the naive credal classifier to the
multilabel case. An imprecise-probabilistic quantifi-
cation is achieved by means of the imprecise Dirichlet
model in its global formulation. A polynomial-time
algorithm to compute whether or not a label is opti-
mal according to the maximality criterion is derived.
Experimental results show the importance of robust
predictions in multilabel problems.

Keywords. Credal classification, imprecise Dirichlet
model, multilabel classification.

1 Introduction

A classifier represents the relationship between the
characteristics of an object (features) and its cate-
gory (class). A traditional classifier predicts the class
variable given the value of the features. Credal classi-
fiers generalize traditional classifiers, allowing for set-
valued predictions of classes. A credal classifier drops
the non-optimal classes returning the classes that are
potentially optimal given the information available.
Depending on the data, there can be one or multiple
optimal classes. Credal classifiers are thus less infor-
mative but more reliable than traditional classifiers
[8]. Both credal and traditional classifiers assume the
classes to be mutually exclusive.

Multilabel classification is a modern type of classifi-
cation, in which an object is allowed to have multiple
relevant classes (or labels). Multilabel classification
arises naturally in many domains. A news article dis-
cussing EU treaties could be labeled for instance as
politics and finance and environment. Similarly, tag-
ging of photos and videos are natural multilabel prob-
lems. In bioinformatics, the identification of the best
mix of drugs for curing HIV has been addressed as a
multilabel problem [14].

The simplest approach for multilabel classification is

binary relevance. Given q labels, binary relevance
develops q independent single-label classifiers. The
main shortcoming of binary relevance is that it ignores
the dependencies among the different classes, which
in many cases are important [12]. The algorithm
of classifier chain [17] is a state-of-the-art approach
to model dependencies among classes. Although it
achieves good empirical performance, it has no direct
probabilistic interpretation.

To model the dependence among classes in a proba-
bilistically sound way, probabilistic graphical models
are typically used [1, 3, 5, 18]. Each label is repre-
sented by a Boolean variable. The i-th Boolean vari-
able represents whether the i-th label is relevant or
not for the current instance. The inference task is
to detect the most probable joint configuration of the
labels. A joint configuration of the labels is a se-
quence of zeros and ones. Given q labels, there are 2q

possible sequences. Evaluating the robustness of the
prediction, already important in traditional classifica-
tion, is even more important in multilabel classifica-
tion. There is however little work on this subject.

In this paper, we tackle this problem by means of
imprecise probabilities [19]. We propose a graphical
model which generalizes the naive Bayes to the multi-
label setting. We learn the model using the imprecise
Dirichlet model (IDM) [4, 20]. We discuss two types of
inferences based on the criterion of maximality. The
joint model detects the maximal sequences, among the
2q possible ones. This inference is exact but is feasible
only when q is limited, for instance smaller than 10.
The marginal inference detects separately the maxi-
mal states of each label. We provide an approximated
algorithm to solve this inference which scales to tens
of labels.

The only other example of credal multilabel classifier
currently available is the recent work of Destercke [13]
which devises a framework similar to binary relevance
but based on credal classifiers.



The paper is organized as follows. We review some
basics about Bayesian networks and the IDM in Sect.
2. We indeed show how the IDM applies to Bayesian
networks in Sect. 3. The (single-label) classical naive
credal classifier is reviewed in Sect. 4. The new model
we present for multilabel data is described in Sect.
5.1. Classification with this model is addressed in
Sect. 5.2 and the technical theorems behind the in-
ference algorithms are in Sect. 5.3. Simulations and
conclusions are in Sects. 6 and 7, while the proofs of
the technical results are in the Appendix.

2 Preliminaries

We denote random variables by uppercase letters,
generic values by lowercase letters and the sets of pos-
sible values by calligraphic letters. For instance X is a
variable whose generic value is x ∈ X . For a Boolean
variable X, X := {0, 1}; given a generic value x ∈ X ,
its negation is ¬x .

We denote by P (X) the probability mass function
over X. Given a set of variables X, arranged into
a directed acyclic graph, a Bayesian network is a set
of conditional tables P (Xi|Pa(Xi)) where Pa(Xi) are
the parents of Xi, i.e., the immediate predecessors of
Xi within the graph. This defines a joint mass func-
tion P (x) =

∏
i P (xi|pa(Xi)) [15].

A credal set over X is a (convex) set of probabil-
ity mass functions over X. Given a credal set, the
maximality criterion allows to choice the optimal (i.e.,
most probable) states as follows: x′′ ∈ X is maximal
if and only if there is no x′ ∈ X s.t. P (x′) > P (x′′)
for each P (X) in the credal set [19].

The imprecise Dirichlet model [20] (IDM) is a stan-
dard approach to learn credal sets from multinomial
data. Given a variable X, a Dirichlet prior P (θx) ∝
θst(x)−1 would induce a probability θx = n(x)+st(x)

N+s .
Thus, considering all the priors s.t.

∑
x t(x) = 1,

would make θx to vary between n(x)
N+s and n(x)+s

N+s .

3 IDM-based Learning with
Independence

In this section we discuss the particular problem of
learning a set of multivariate distributions through
the IDM under specific independence assumption.
This is done in the special case where the indepen-
dence relations can be described within the framework
of Bayesian networks. We extend Zaffalon’s ideas
stated in [23].

To begin the discussion let us consider the following
example.

X Y Z

Figure 1: A chain topology

Example 1. Consider a Bayesian network over three
Boolean variables X, Y , and Z with the topology in
Fig. 1. This models the conditional independence be-
tween X and Z given Y , with the joint distribution
factorizing as P (x, y, z) = P (x) ·P (y|x) ·P (z|y). The
likelihood of a set of observations D is:

L(θ) := P (D|θ) =
∏
x

θn(x)x

[∏
y

θ
n(x,y)
y|x

[∏
z

θ
n(y,z)
z|y

]]
,

(1)
where θx := P (x), θy|x := P (y|x), and θz|y := P (z|y),
for each x, y, z, and n(·) is the counting function. A
conjugate prior over the parameters θ is:

P (θ) ∝
∏
x

θst(x)−1x

[∏
y

θ
st(x,y)−1
y|x

[∏
z

θ
st(y,z)−1
z|y

]]
,

(2)
where s and the t(·) are nonnegative parameters. The
first term in Eq. (2) is proportional to a Dirichlet
prior. We set

∑
x t(x) = 1. Considering the corre-

sponding (structural) constraint for the counts in the
likelihood, i.e.,

∑
x n(x) = N , we can regard s as the

equivalent sample size (ESS) of this prior distribution.

Let us identify the additional constraints required to
regard s as an ESS even for the prior in Eq. (2).
We just identify the (again, structural) constraints on
the likelihood

∑
xy n(x, y) =

∑
yz n(y, z) = N , which

correspond to:

∑
xy

t(x, y) =
∑
yz

t(y, z) = 1. (3)

The updated parameters become therefore:

θx =
n(x) + st(x)

N + s
, (4)

θy|x =
n(x, y) + st(x, y)

n(x) + st(x)
, (5)

θz|y =
n(y, z) + st(y, z)

n(y) + st(y)
, (6)

with t(x) =
∑

y t(x, y) and t(y) :=
∑

z t(y, z).

An IDM-based model is therefore obtained by consid-
ering all the specifications of the parameters in Eqs.
(4-6) consistent with the above constraints over t(x),



t(x, y), and t(y, z):∑
x

t(x) = 1 (7)∑
y

t(x, y) = t(x),∀x (8)

∑
z

t(y, z) =
∑
x

t(x, y),∀y. (9)

Such a model can be regarded as induced by a set of
priors made of Dirichlet components and with ESS
s. This is the way we generalize the IDM to mul-
tivariate models with independence. To check that
the constraints are sufficient, consider all the (struc-
tural and not all independent) constraints satisfied by
the count function n(·) in Eq. (1), i.e.,

∑
x n(x) =∑

xy n(x, y) =
∑

yz n(y, z) = N ,
∑

y n(x, y) = n(x),∑
z n(y, z) = n(y),

∑
x n(x, y) = n(y). It is a trivial

exercise to check that the t(·) parameters satisfy the
analogous relations (with one replacing N).

The example deals with a node which is a child of
a child of another variable. This situation does not
appear in Zaffalon’s original work for the naive topol-
ogy, neither in other papers about more connected
topologies [24].

This approach can be easily extended to general
Bayesian networks. The specifications over X apply
to parentless nodes with Y replaced by the whole chil-
dren set, the specifications over Z apply to any child-
less node with Y replaced by the whole parents set,
and those for Y apply to any non-root non-leaf node
with the parents and children playing the role of X
and Z.

This section provides guidelines for learning the pa-
rameters of Bayesian networks based on the IDM. The
resulting model is a credal network [9], with the local
parameters taking their values from different credal
sets, but with the constraints over the parameters of
the prior inducing a non-separate specification [2].

4 The Naive Credal Classifier

In this section we briefly review the credal version
of the naive Bayes classifier as proposed by Zaffalon
in [23]. We denote the class variable as C and the
feature variables as F := (F1, . . . , Fm). A dataset
of N complete i.i.d. joint observations of (C,F ) is
available together with a counting function n(·).

The features are assumed to be conditionally inde-
pendent given the class. This corresponds to the
topology in Fig. 6 and induces the factorization
P (c,f) = P (c) ·

∏m
i=1 P (fi|c), for each c ∈ C and

f := (f1, . . . , fm) ∈
∏m

i=1 Fi.

C

F1 F2 F3 F4

By proceeding as in Ex. 1, we have:

P (c) =
n(c) + st(c)

N + s
, (10)

P (fi|c) =
n(c, fi) + st(c, fi)

n(c) + st(c)
, (11)

for each fi ∈ Fi, c ∈ C, i = 1, . . . ,m. The class labels
assigned to an unannotated instance f of the features
are those s.t. arg maxc∈C P (c,f).

The IDM constraints on the above positive parame-
ters are:

∑
c t(c) = 1 and

∑
fi
t(c, fi) = t(c), for each

i = 1, . . . ,m and c ∈ C.1 We denote as t a generic
value for the joint variable of these parameters and
by T the corresponding feasible region.

The class labels assigned to f by this credal classi-
fier are the undominated ones according to the max-
imality criterion. Given c′, c′′ ∈ C, c′ dominates c′′

if P (c′,f) > P (c′′,f) for any specification consistent
with the IDM constraints. This is equivalent to check:

inf
t∈T

[
n(c′′) + st(c′′)

n(c′) + st(c′)

]m−1 m∏
i=1

n(c′, fi) + st(c′, fi)

n(c′′, fi) + st(c′′, fi)
> 1.

(12)
The optimization of the second term can be achieved
independently. The objective function rewrites as:[

n(c′′) + st(c′′)

n(c′) + st(c′)

]m−1 m∏
i=1

n(c′, fi)

n(c′′, fi) + st(c′′)
, (13)

with the constraints being simply now t(c′) + t(c′′) =
1, with t(c′), t(c′′) > 0. In other words, we can express
the objective function as a function of a single vari-
able. Its logarithmic derivative is a linear fractional
variable, and the second derivative is always positive.
Overall the minimization can be efficiently achieved
by bracketing (see [23] for the details).

5 The Multilabel Credal Classifier

5.1 Model Specification

In this section we extend the setup of the previ-
ous section to multilabel classification. The class

1The strict positivity is required because otherwise the cor-
responding prior would be improper.



variable C is replaced by q (Boolean) class labels
C := (C1, . . . , Cq), where q is the cardinality of C.
This is standard way to cope with non-exclusivity: if
the j-th label of C is active Cj = 1, otherwise Cj = 0.

We call C1 the superclass, and the other class labels
subclasses. We assume the conditional independence
of the subclasses given the superclass. Simplistically
we set as superclass the class which is more frequently
observed as active. The dependencies between classes
can be learned in more sophisticated way, optimizing
for instance the Bayesian scores [7] of the graph which
connects the classes.

A dataset of N joint observations of (C,F ) is avail-
able together with a counting function n(·).

Each feature is replicated q times. For each k =
1, . . . ,m, {F j

k}
q
j=1 are replicas of Fk. For each j =

1, . . . , q, the replicated features {F j
k}mk=1 are assumed

to be independent given Cj . This is a simplifying
assumption, already formulated in other papers [3].
Strictly speaking, an additional dummy child model-
ing the fact that all the replicas corresponds to the
same variable should have been added.

Accordingly, the joint factorizes as follows:

P (c,f) = P (c1)

[
q∏

i=2

P (ci|c1)

]
q∏

j=1

m∏
k=1

P (f jk |cj),

(14)
where the values of the class labels and of the features
are those consistent with c and f . Parameters in Eq.
(14) can be learned from the data through a procedure
similar to that in the previous sections, i.e.,

P (c1) =
n(c1) + st(c1)

n+ s
, (15)

P (ci|c1) =
n(c1, ci) + st(c1, ci)

n(c1) + st(c1)
, (16)

P (f jk |cj) =
n(cj , fk) + st(cj , f

j
k)

n(cj) + st(cj)
. (17)

An IDM-like version is obtained by considering all the
models consistent with the following constraints:2∑

c1

t(c1) = 1, (18)∑
ci

t(c1, ci) = t(c1),∀ci (19)∑
fj
k

t(cj , f
j
k) =

∑
c1

t(c1, cj) = t(cj),∀cj , (20)

2Here and in the following, if there is no risk of ambiguity,
the arguments of the sums and the products are omitted for
sake of notation. E.g.,

∑
c1

is a shortcut for
∑

c1∈C1
.
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Figure 2: The multilabel naive topology

together with the strict positivity of all the param-
eters. Even in this case we denote by t the generic
value of the joint variable including all these parame-
ters and by T the corresponding feasible region. The
imprecision in this model can be regarded as induced
by s missing observations, which we are completely
ignorant about.

5.2 Maximal Sequences and Maximal Labels

Consider a complete observation f of the features and
two sequences of labels c′ and c′′. According to max-
imality, the second sequence is undominated by the
first if and only if there is (at least) a prior consistent
with the constraints s.t. the first sequence is less (or
equally) probable than the second, i.e.,3

inf
t∈T

Pt(c
′,f)

Pt(c′′,f)
≤ 1. (21)

In Section 5.3 we discuss how to ascertain whether
sequence c′ dominates c′′, in linear time with respect
to the number of classes and features.

A more complex problem is to ascertain whether se-
quence c′′ is optimal. This happens if the condition
(21) is satisfied for each possible specifications of c′,
i.e.,

max
c′

inf
t

Pt(c
′,f)

Pt(c′′,f)
≤ 1. (22)

To detect the non-dominated sequences it is in prin-
ciple necessary to compare each possible sequence c′

against each possible alternative sequence c′′. This
implies running 2q · 2q = 22q tests of the same type as
Eq. (21). In Section 5.3 we present a more efficient
procedure, which detects the maximal sequences by
running the test of Eq. (22) only once for each can-
didate sequence c′′ (i.e., 2q times), with a substantial
computational saving. We call this model the joint
model, as it makes inference on the joint probability

3This is an alternative formulation w.r.t. that in Eq. (12).



of the labels. Yet the complexity of the joint is expo-
nential in the number of labels; thus the identification
of the optimal sequences is feasible only of the number
of classes is limited, for instance q < 10.

We thus devise a different approach in order to deal
with datasets containing many labels. It looks for the
maximal states of each label rather than for the max-
imal sequences. We call this approach the marginal
model. The marginal inference has polynomial com-
plexity (see Section 5.3); it is however less informa-
tive than the detection of the maximal sequences.
Consider having detected k labels whose maximal
states are both relevant and non-relevant. The 2k

sequences obtained combining their states in all pos-
sible ways contain the maximal sequences and others
non-maximal sequences. It is not possible to know
which of the 2k sequences is maximal and which is
non-maximal.

This approach corresponds to the following optimiza-
tion task:

min
c′′:c′′l =1

max
c′

inf
t

Pt(c
′,f)

Pt(c′′,f)
≤ 1, (23)

for each l = 1, . . . , q, with the minimum over all the
specifications of the second sequence s.t. c′′l = 1. If
the inequality is satisfied, then there is at least an
optimal sequence whose l-th label is active. By re-
placing c′′l = 1 with c′′l = 0, we can decide if there is
an optimal sequence with the l-th label inactive.4

By iterating the test in Eq. (23) and its analogous
with cl = 0 for each l = 1, . . . , q, we can decide, for
each label, which one of the following three options
applies: (i) all the maximal sequences have that label
active; or (ii) all the maximal sequences have the label
inactive; or (iii) there are maximal sequences with the
label active and others with the label inactive.

We call this approach based on the joint model in Eq.
(14) and the IDM constraints in Eqs. (18-20) multi-
label naive credal classifier (MNCC). The derivation
uses ideas analogous to those proposed by De Bock
and de Cooman to detect the maximal sequences in
hidden Markov models [11].

5.3 Solving the Optimization

In this section we present the technical results be-
hind our implementation of the MNCC and a possi-
ble direction for its development. Let us start from
the maximality-based dominance test among two se-
quences, which can be performed as follows.

4By removing the constraints c′′l = 1 from Eq. (23) we
test whether there is a maximal sequence. But this is true by
definition. Thus, if the inequality in Eq. (23) is not satisfied for
c′′l = 1, then it should be satisfied for c′′l = 0, and vice versa.

Theorem 1. Given two sequences c′ and c′′ and an
instance of the features f , the decision task in Eq.
(21) is equivalent to:

∏
i:c′i=¬c′′i

n(c′1, c
′
i) · gi(c′i, c′′i ,f)

n(c′′1 , c
′′
i ) + s

≤ 1, (24)

if c′1 = c′′1 , and to

inf
0<t1<1

h(c′1, c
′′
1 , t1,f)

∏
i

n(c′1, c
′
i)g̃i(c

′
i, c
′′
i ,f)

n(c′′1 , c
′′
i ) + st1

, (25)

if c′1 = ¬c′′1 , where

gi(c
′
i, c
′′
i ,f) := inf

0<ti<1

∏
k

n(c′i,fk)
n(c′i)+s(1−ti)
n(c′′i ,fk)+sti
n(c′′i )+sti

, (26)

g̃i(c
′
i, c
′′
i ,f) := gi(c

′
i, c
′′
i ,f) if c′i = ¬c′′i and one other-

wise, and h(c′1, c
′′
1 , t1,f) is defined as[

n(c′′1) + st1
n(c′1) + s(1− t1)

]q+m−2∏
k

n(c′1, fk)

n(c′′1 , fk) + st1
. (27)

Furthermore, the objective functions in Eq. (25) and
Eq. (26) are convex.

The proof of this theorem is in the Appendix.

Th. 1 can be used to decide whether or not c′ does
not dominate c′′. Because of the convexity results,
the optima in Eq. (25) and Eq. (26) can be evalu-
ated by bracketing (e.g., bisection) in constant time
(assuming that we work with finite precision). Thus,
the dominance test only takes O(qf) time.

To detect the set of maximal sequences, the test
should be iterated over all the possible pairs. Al-
ternatively, we can adopt the approach in Eq. (22),
i.e., maximizing w.r.t. c′. If we add the constraint
c′1 = c′′1 , the maximization becomes trivial because of
the factorization in Eq. (24). If c̃′ is the value leading
to the maximum, we have c̃′1 = c′′1 and, for i > 1,

c̃′i :=

{
¬c′′i if

n(c′′1 ,¬c
′′
i )gi(¬c

′′
i ,c
′′
i ,f)

n(c′′1 ,c
′′
i )+s > 1,

c′′i otherwise.
(28)

Thus, we perform the dominance test as in Th. 1
with c̃′ and c′′. We similarly proceed for c′1 = ¬c′′1 by
considering Eq. (25) instead of Eq. (24). If t∗1 is the
value leading to the infimum, the task rewrites as:

max
c′2,...,c

′
q

[
h(¬c′′1 , c′′1 , t∗1,f)

∏
i

n(¬c′′1 , c′i)g̃i(c′i, c′′i ,f)

n(c′′1 , c
′′
i ) + st∗1

]
.

(29)



The value of t∗1 depends on c′ and the maximization
cannot be distributed over the product as in the previ-
ous case. Nevertheless, for the i-th term of the prod-
uct, a maximization w.r.t. c′i ∈ {¬c′′i , c′′i } would be:

max

{
n(¬c′′1 ,¬c′′i )gi(¬c′′i , c′′i ,f)

n(c′′1 , c
′′
i ) + st∗1

,
n(¬c′′1 , c′′i )

n(c′′1 , c
′′
i ) + st∗∗1

}
,

(30)
with the double star denoting the fact that the two
optima w.r.t. t1 can be different. Sufficient condi-
tions for one of these two terms being the maximum
irrespectively of the values of t∗1 and t∗∗1 can be used
to determine c̃′ as in the previous case, i.e.,

c̃′i :=

{
¬c′′i if

n(¬c′′1 ,¬c
′′
i )gi(¬c

′′
i ,c
′′
i ,f)

n(c′′1 ,c
′′
i )+s >

n(¬c′′1 ,c
′′
i )

n(c′′1 ,c
′′
i )
,

c′′i if
n(¬c′′1 ,¬c

′′
i )gi(¬c

′′
i ,c
′′
i ,f)

n(c′′1 ,c
′′
i )

<
n(¬c′′1 ,c

′′
i )

n(c′′1 ,c
′′
i )+s .

(31)
Yet, unlike the specification in Eq. (28), it might
be that none of the two inequalities in Eq. (31) are
satisfied, and the corresponding value of c̃′i remains
undefined. If this is the case, we heuristically set the
value of c̃′i corresponding to the limit of Eq. (31) for
small values of s > 0.5

The above approach, whose complexity is the same
as a single dominance test, i.e., O(qf), can be used to
decide whether or not a sequence c′′ is maximal. This
is the case if the test in Th. 1 is satisfied for both the
specifications of c′ in Eq. (28) and Eq. (31).

To obtain the whole set of optimal sequences, we it-
erate this procedure over all the 2q possible specifica-
tions of c′′. To avoid this exponential blow-up, the
approach in Eq. (23), i.e., minimizing w.r.t. c′′ with
a fixed value for c′′l , can be considered instead. In
practice this corresponds to minimize the maximum
between the above considered expressions for c′1 = c′′1
and c′1 = ¬c′′1 . Although each one of the two ex-
pressions factorizes, moving the minimum w.r.t. the
different factors inside the two arguments of the max-
imum might introduce an approximation, i.e.,

min
c′′1

min
c′′2 ,...,c

′′
q

max
c′1

max
c′2,...,c

′
2

inf
t

Pt(c
′,f)

Pt(c′′,f)
≥

min
c′′1

max
c′1

min
c′′2 ,...,c

′′
q

max
c′2,...,c

′
2

inf
t

Pt(c
′,f)

Pt(c′′,f)
, (32)

where the constraint c′′l = 1 on both sides is left im-
plicit for sake of readability. The above inequality
trivially follows from the technical result here below.

Lemma 1. Given two arrays ~a and ~b with the same
length n, the following inequality holds:

min
i

max{ai, bi} ≥ max{min
i
ai,min

i
bi} (33)

5If n(¬c′′1 ,¬c′′i )gi(¬c′′i , c′′i ,f) 6= n(¬c′′1 , c′′i ), it is easy to
check that the two inequalities cannot be simultaneously satis-
fied and, for sufficiently small s, one of them is always satisfied.

where ai and bi are the i-th elements of ~a and ~b, and
the minima are intended w.r.t. i = 1, . . . , n.

The proof of this lemma is in the Appendix. The
right-hand side of Eq. (32) can be efficiently evalu-
ated by reducing it to a single dominance test as we
did in the first part of this section for the task in
Eq. (22). If its value is (strictly) greater than one,
Eq. (32) implies that also the left-hand side of Eq.
(23) is greater than one, i.e., there is no maximal se-
quence with the l-th label active. If this is the case, we
conclude that all the maximal sequences have the l-
th label inactive. If the analogous optimization with
the constraint c′′l = 0 instead of c′′l = 1 gives a re-
sult greater than one, we similarly conclude that all
the maximal sequences have the l-th label active. Fi-
nally, if none of the above two is the case, we adopt a
cautious approach by stating that there could either
be maximal sequences with the l-th label active and
inactive. The above approach can be considered to
efficiently characterize the set of maximal sequences
of the MNCC by means of an outer approximation.

6 Experiments

We compare the two variants of MNCC (joint model
and marginal model) with the Bayesian graphical
model, whose structure is as in Fig. . We adopt
the BDeu prior [15, Chap.17] to learn the Bayesian
model. This model is referred to in the following as
the Bayesian model.

We consider four benchmark datasets, whose charac-
teristics are reported in Tab. 1. Emotions, Scene, and
Slashdot are classical benchmark datasets for multil-
abel classifiers. The E-mobility dataset is taken from
a mobility study. It tracks which means of transport
(car, train, bus, etc.) are used by a person for a given
trip. The features are constituted by the length and
duration of the trip, hour and day of the week, num-
ber of persons, reason of the trip, etc. [6].

Data set Classes Features Instances

Emotions 6 44/72 593
Scene 6 224/294 2407
E-mobility 10 14/18 4226
Slashdot 22 496/1079 3782

Table 1: Benchmark datasets.

We validate the classifiers by a ten-folds cross-
validation. Before training any classifier, we perform
two pre-processing steps. First, we discretize numer-
ical features into four bins. Then we perform feature
selection as follows. We adopt the correlation-based
feature selection (CFS) [21, Chap. 7.1], often used in



traditional classification. We perform CFS q times,
once for each different label. Eventually, we retain
the union of the features selected in the q runs. This
is a useful pre-processing step which reduces the num-
ber of features, removing the non-relevant ones. As an
example, Tab. 1 displays the number of features after
and before this selection procedure when applied to
the benchmark datasets considered in this paper. Fea-
ture selection for multilabel classification is however
an open problem, and more sophisticated approaches
can be designed to this end.

We start by assessing the joint model. We measure
the exact match of the Bayesian model, namely the
proportion of times in which the whole sequence of
classes has been correctly predicted. For the MNCC
we measure the # of sequences, namely the num-
ber of maximal sequences; moreover we measure the
credal match, namely the proportion of times in which
the actual sequence belongs to the set of optimal se-
quences.

Dataset Bayesian Credal (MNCC)
Exact match # of seqs Credal match

Emotions .27 9.4 .80
Scene .29 7.6 .80

Table 2: Experimental results of the joint model.

The sequence predicted by the Bayesian model is al-
ways recognized as maximal. The credal joint model
is more robust than its Bayesian counterpart: the
credal match is about three times larger than the to-
tal accuracy of the Bayesian multilabel classifier (see
Tab.2). The number of maximal sequences is reason-
ably limited, considering that the presence of 6 classes
implies 64 possible sequences. The exact match of
the Bayesian classifier drops sharply on the instances
which have many maximal sequences. On the Scene
dataset, the total accuracy is 0.23 and 0.40 on the in-
stances which have respectively less and more than
nine maximal sequences. A similar pattern is ob-
served also on the Emotions dataset. These results
are obtained through the joint model, which enumer-
ates all the 2q possible sequences and checks whether
they are maximal as in Eq. (22). They show the inter-
esting potential of the credal approach to multilabel
classification. Yet, the joint model can only cope with
small q.

The marginal model can deal with larger q and thus
can be tested on more challenging datasets. We adopt
the outer approximation corresponding to the domi-
nance test in Eq. (23). Results of a ten-folds cross
validations are in Figs. 3–5. We evaluate the marginal
model label-wise. In particular we measure for each
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Figure 3: Accuracy of the Bayesian model on the in-
stances on which the marginal MNCC model is de-
terminate (light bars) and indeterminate (dark bars).
The black squares denote the determinacy level. The
results are presented label-wise.
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Figure 4: Accuracy of the Bayesian model on the E-
mobility dataset. Light gray bars denote the accu-
racy when the marginal MNCC model is determinate.
When determinacy (black squares) is one, the dark
gray bar associated to the case when MNCC is in-
determinate is not shown. The results are presented
label-wise.
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Figure 5: Accuracy of the Bayesian model on the
Slashdot dataset. The dark gray bars denote the accu-
racy of the Bayesian model when the MNCC is inde-
terminate. If the determinacy (black squares) is zero,
the light gray bar corresponding to the cases when the
MNCC is determinate is undefined. Labels are sorted
according to the determinacy level just for sake of
readability. The results are presented label-wise.

label the accuracy of Bayesian model when MNCC re-
turns a determinate and an indeterminate prediction.
We also report the determinacy, i.e. the proportion of
instances on which MNCC is determinate. On Scene
and Emotions the accuracy of the Bayesian model
sharply drops when the multilabel classifier becomes
indeterminate. This confirms a well-known strength
of credal classifiers compared to Bayesian classifiers
[8]. This is generally confirmed also on E-mobility
and Slashdot. However in these datasets there are
also labels in which the Bayesian model is perfectly
accurate when the credal model is indeterminate (see
the first labels of both datasets). This suggests that
the credal model is excessively indeterminate in some
situations. This is a problem which is also known
in traditional classification and which could be miti-
gated for instance by ε-contaminating the IDM with
the uniform prior.

Future studies might inspect also further indicator of
performance for multilabel classification, such as the
F-metric. We focus on the exact match and on the
label-wise accuracy as the inferences for this indica-
tors are optimal. Optimal inferences for other indica-
tors have still to be developed.

A Matlab software implementation of the MNCC is
freely available at http://ipg.idsia.ch/software.

7 Conclusions

We have generalized the naive credal classifier to cope
with multilabel data. The preliminary experiments
are promising: the credal approach yields more robust
predictions than the Bayesian approach. To scale to
large number of labels it is necessary adopting the
marginal model, whose inference is approximated.

As future work, it could be interesting to compare the
inferences yielded by local and the global specification
of the IDM (e.g., by exploiting some of the results
in [10]). Moreover one could consider optimality cri-
teria others than maximality (e.g., E-admissibility).
A comparison with other methods possibly yielding
multiple sequences (e.g., [16, 22]) could be also con-
sidered.
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A Proofs

Proof of Theorem 1. We consider the objective
function in Eq. (21) by distinguishing whether or not
the two sequences c′ and c′′ share the first label, i.e.,

Pt(c
′,f)

Pt(c′′,f)
=

 Gt(c
′, c′′,f), if c′1 = c′′1 ,

Ht(c
′, c′′,f), if c′1 = ¬c′′1 .

(34)

Because of Eq. (14), function Gt(c
′, c′′,f) writes as:

∏
i:c′i=¬c′′i

 n(c′1, c
′
i) + st(c′1, c

′
i)

n(c′′1 , c
′′
i ) + st(c′′1 , c

′′
i )

m∏
k=1

n(c′i,fk)+st(c′i,fk)
n(c′i)+st(c′i)

n(c′′i ,fk)+st(c′′i ,fk)

n(c′′i )+st(c′′i )

 ,
(35)

where the restriction in the outer product is possible
because of the contribution of the other terms is one
(remember that c′1 = c′′1). A preliminary optimization
w.r.t. the constraints can be achieved as in Sect. 4
by setting t(c′i, fk) → 0 and t(c′′i , fk) → t(c′′i ) (re-
member that c′i = ¬c′′i ). Similarly, t(c′1, c

′
i) → 0 and

t(c′′1 , c
′′
i ) → t(c′′1). After these operations, the result

rewrites as:

∏
i

′

 n(c′1, c
′
i)

n(c′′1 , c
′′
i ) + st(c′′1)

∏
k

n(c′i,fk)
n(c′i)+st(c′i)

n(c′′i ,fk)+st(c′′i )

n(c′′i )+st(c′′i )

 , (36)

where the prime in the product is a shortcut for the re-
striction. The optimization w.r.t. t(c′′1) is achieved in
the limit t(c′′1)→ 1. Even the remaining optimization
tasks can be achieved independently of the others. The
result is the left-hand side of Eq. (24), where, in Eq.
(26), we have set ti := t(c′′i ), and hence t(c′i) = 1− ti
(remember that, for these terms, c′i = ¬c′′i ).

We similarly proceed for Ht(c
′, c′′,f), i.e., because of

Eq. (34) and Eq. (14):[
n(c′′1) + st(c′′1)

n(c′1) + st(c′1)

]q+m−2∏
k

n(c′1, fk) + st(c′1, fk)

n(c′′1 , fk) + st(c′′1 , fk)

∏
i

n(c′1, c
′
i) + st(c′1, c

′
i)

n(c′′1 , c
′′
i ) + st(c′′1 , c

′′
i )

∏
j

′∏
k

n(c′j ,fk)+st(c′j ,fk)

n(c′j)+st(c′j)

n(c′′j ,fk)+st(c′′j ,fk)

n(c′′j )+st(c′′j )

.

(37)

As in the previous case, we perform some optimiza-
tion, rename the remaining variables, and indepen-
dently optimize w.r.t. ti (i > 1). Afterwards, we
optimize w.r.t. t1 and inftHt(c

′, c′′,f) becomes as in
Eq. (25).

Finally, we prove that the objective functions in the
right-hand side of Eq. (26) and in Eq. (25) are con-
vex. The derivative of the logarithm of the objective
function in the right-hand side of Eq. (26) divided by
the positive constant s is equal to:

m

n(c′i) + s(1− ti)
−
∑
k

1

n(c′′i , fk) + sti
+

m

n(ci)′′ + sti
.

(38)
The second derivative, again divided by s, is:

m

[n(c′i) + s(1− ti)]2
+
∑
k

1

[n(c′′i , fk) + sti]2
(39)

− m

[n(ci)′′ + sti]2
, (40)

and its nonnegativity easily follows from n(c′′i ) ≥
n(c′′i , fk). Similarly, the second derivative of the log-
arithm of the objective function in Eq. (25) is:

− q +m− 2

[n(c′′1) + st1]2
+

q +m− 2

[n(c′1) + s(1− t1)]2

+
∑
k

1

[n(c′′1 , fk) + st1]2
+
∑
i

1

[n(c′′1 , c
′′
i ) + st1]2

(41)

As in the previous case, the nonnegativity follows from
n(c′′i ) ≥ n(c′′i , fk).

Proof of Lemma 1. We prove the result by contra-
diction. Thus, we assume that:

min
i

max{ai, bi} < max{min
i
ai,min

i
bi}. (42)

Let i∗ denote the arg min of the left-hand side. If,
without any lack of generality, we assume mini ai ≥
mini bi, Eq. (42) rewrites as:

max{ai∗ , bi∗} < min
i
ai. (43)

If ai∗ > bi∗ , we obtain the contradiction ai∗ < mini ai.
Otherwise, we have:

ai∗ ≤ bi∗ < min
i
ai (44)

which is also a contradiction.


